Covers of the Integers with Odd Moduli

نویسندگان

  • Zhi-Wei Sun
  • ZHI-WEI SUN
چکیده

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 ± p with a, n ∈ {0, 1, 2, . . . } and p a prime. We also construct another cover of Z with odd moduli and use it to prove that x − F3n/2 has at least two distinct prime factors whenever n ∈ {0, 1, 2, . . . } and x ≡ a (mod M), where {Fi}i>0 is the Fibonacci sequence, and a and M are suitable positive integers having 80 decimal digits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covers of the Integers with Odd Moduli and Their Applications to the Forms

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1−1, . . . , 2nk− 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2n ± pa w...

متن کامل

Covers of the Integers with Odd Moduli and Their Applications

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 ± p w...

متن کامل

Covers of the Integers with Odd Moduli and Their Applications 3

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m relatively prime to 15015 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2±p with a, n ∈ {0...

متن کامل

Covers of the integers with odd moduli and their applications to the forms xm-2n and x2-F3n/2

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m relatively prime to 15015 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2±p with a, n ∈ {0...

متن کامل

1 3 Fe b 20 07 Preprint ( 2007 - 02 - 13 ) COVERS OF THE INTEGERS WITH ODD MODULI AND THEIR APPLICATIONS TO THE FORMS

In this paper we construct a cover {as(mod ns)}ks=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m relatively prime to 15015 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 + p with p a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008